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Abstract

This study explores the predictive capabilities of the Body Mass Index (BMI) formula across a 
diverse dataset, examining the potential enhancements achievable through integrating additional 
parameters using machine learning (ML) models. Various modern ML models were utilized (K-
Nearest Neighbors, Neural Networks, Decision Trees, Support Vector Classification, Logistic 
Regression, and Ridge Classifiers. Ensemble models: voting Classifier, Random Forest, and 
Gradient Boosting), demonstrating improved accuracy and precision over the traditional BMI 
calculations. Incorporating age and gender into BMI calculations together with the best performing 
ML model such as Gradient Boosting offers promise for more accurate and personalized health 
assessments, with significant implications for clinical practice and public health interventions.

Keywords: Body Mass Index, BMI, BMI Classification, Obesity, Weight Management, Health, 
Machine Learning, ML, Prediction.

Introduction

The Body Mass Index (BMI) has long been a staple metric for assessing body weight relative to 
height in health assessments [1]. However, some studies have highlighted its limitations, prompting 
exploration into alternative approaches. For example, due to the variety of body types, muscle 
distribution, bone mass, etc, BMI is not appropriate as the only indication for diagnosis, which 
could lead to misclassification [2]. However, weight control is a key factor in the prevention of non-
communicable diseases. Recent studies have shown the utility of Machine Learning (ML) in clinical
settings. For example, a recent ML approach predicted weight changes over the years, which could 
be helpful for weight management approaches [3]. Thus, it will be interesting to evaluate the 
efficacy of the traditional BMI formula and investigate the potential improvements offered by 
modern ML classification models by incorporating additional parameters other than the traditional 
height and weight. For example, as a person ages, body fat mass naturally increases, and muscle 
mass declines. Numerous studies have shown that a higher BMI of 23.0–29.9 in older adults can be 
protective against early death and disease [4]. Other studies have indicated that the risk for heart 
disease and diabetes increases in women with a waist measurement greater than 35 inches (88.9 cm)
and more than 40 inches (101.6 cm) in the case of men [5]. Furthermore, the BMI may not 
accurately reflect the health of certain racial and ethnic populations. For example, numerous studies 
have shown that people of Asian-Pacific descent have an increased risk of chronic disease at lower 
BMI cut-off points, which leads to specific BMI guidelines with alternative BMI cut-off points for 
this population [6]. 

This paper investigates the potential of modern ML classification models to enhance BMI 
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calculations by incorporating additional parameters such as age, gender, and ethnicity. Leveraging 
data from the National Health and Nutrition Examination Survey (NHANES) [7], we aimed to 
provide novel insights into BMI calculations and their implications for health assessments. 
NHANES is a program of studies designed to assess the health and nutritional status of adults and 
children in the United States, a subprogram of the Centers for Disease Control and Prevention 
(CDC). Survey data is intended to be used in epidemiological studies and health sciences research, 
which help develop sound public health policy, direct and design health programs and services, and 
expand the health knowledge for the Nation. These data were fundamental to conducting our 
comprehensive analysis aiming to provide potential new alternative measurements to the traditional 
BMI calculations. We also employed a wide variety of modern ML models: K-Nearest Neighbors, 
Neural Networks, Decision Trees, Support Vector Classification, Logistic Regression, and Ridge 
Classifiers. Ensemble models: voting Classifier, Random Forest, and Gradient Boosting, aiming to 
provide the most reliable and accurate results. 

Methods

We downloaded data from 5663 individuals obtained from surveys combining interviews and 
physical examinations from NHANES (years 1999 to 2022). The dataset comprises weight, height, 
age, gender, ethnicity, and BMI variables. Data Privacy was a priority for the NHANES dataset. 
Using this robust NHANES dataset, we employed various ML models (K-Nearest Neighbors [8], 
Neural Networks [9], Decision Trees [10], Support Vector Classification (SVC)[11], Logistic 
Regression [12], and Ridge Classifiers [13]. ML ensemble models: voting Classifier [14], Random 
Forest [15], and Gradient Boosting [16]) to predict BMI categories based on the inclusion of 
additional parameters such as age, gender, and ethnicity. Classification models are well-suited for 
predicting and assigning observations into discrete categories. Subsequently, ML classification 
models were employed to discern whether incorporating additional parameters such as age, gender, 
and ethnicity could enhance predictive accuracy. We compute the standard BMI formula and 
compare different ML predictions (see below) against real BMI classification values (Underweight, 
BMI below 18.5; Normal, BMI 18.5 – 24.9; Overweight, BMI 25.0 – 29.9, and Obese BMI 30.0 
and above). Categorical variables (gender and ethnicity) were transformed into numerical 
representations, and all training parameters were subjected to feature importance, distribution, 
balance and correlation analysis to analyze the quality of the different datasets. 

To evaluate model performance and measure the agreement between the predicted and actual 
classifications, the following statistical analyses were conducted: Accuracy, Balanced Accuracy, 
Precision, Recall, Precision-Recall Curve, Area Under the Curve (AUC), F1- and F-beta Scores, 
Matthews Correlation Coefficient (MCC), and, Cohen's Kappa.

For ML model/s selection, the models with the highest consistent values across all statistical metrics
(Average) were selected. Additionally, cross-validation techniques/scores (CVS) were employed to 
ensure the reliability and generalizability of our findings. Specifically, we utilized Stratified K-Fold 
cross-validation, which is particularly suitable for maintaining the distribution of target classes 
across folds. This technique involves splitting the dataset into K folds while preserving the 
proportion of each class in every fold. In our study, we set K to 5, resulting in five folds for training 
and evaluation. This approach allows us to effectively assess the generalization performance of our 
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models and mitigate the risk of overfitting. Finally, we assessed the degree of agreement/ 
disagreement between the selected predictive ML model and the traditional BMI formula by 
employing a comprehensive analysis using 1000 random prompt instances.

Results

Our findings indicate that the features of the traditional BMI formula, based solely on weight and 
height, exhibits reasonable predictive power across most ML models (Fig. 1, Tables 1 and 2). 
However, some ML models trained on datasets enriched with additional age and gender information
were able to outperform the reference model. Most models demonstrated a high precision and 
accuracy, while models such as SVC, Gradient Boosting, and Neural Network, demonstrated to 
outperform the reference model. The results show that training the ML models with additional age 
and gender parameters, particularly the HWA and HWAG datasets, can notably improve the current 
BMI formula predictive capability.

Figure 1. ML models performance.
This graphic represents the average of all statistical measurements (see methods) from all ML models under study. 
Abbreviations: HW: height and weight; HWG: height, weight, and gender; HWA: height, weight, and age; HWE: 
height, weight, and ethnicity; HWAG: height, weight, age, and gender; and HWAGE: height, weight, age, gender, and 
ethnicity.
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Table 1. Balanced Accuracy,  F1-score, AUC, MCC, and average statistics of the ML models. 
This table represents a more detailed statistical table for Fig. 1. The above statistics were chosen for representation 
purposes as they offer a good balance between capturing the overall performance and addressing the challenges posed 
by class imbalance (see Methods). Abbreviations: HW: height and weight; HWA: height, weight, and age; HWG: 
height, weight, and gender; HWE: height, weight, and ethnicity; HWAG: height, weight, age, and gender; and HWAGE:
height, weight, age, gender, and ethnicity. B.Acc.: Balanced Accuracy; F1: F1-score; AUC: Area Under the Curve; and 
MCC: Matthews Correlation Coefficient. Light gray cells with bold characters stand for the best performance 
metrics/models in the reference dataset (HW); Red background cells indicate outperforming metrics, i.e. improved 
prediction values compared to the reference HW-model. Orange background cells indicate the best row metrics, other 
than red cells. Yellow background cells indicate the lowest values, i.e. models with lowest stat metrics. Red cells with 
bold characters and blue square borders indicate the best performing ML model compared to the reference and the top 
cross-validation models (see Table 2). Orange background cells with green square borders indicate the best cross-
validation performing model. 

The cross-validation analysis further supports the use of NeuralNetwork and Gradient Boosting 
models as best performing ML models trained with additional age and gender features (Table 2). 

Table 2. Cross-Validation Analysis. 
This table represents the CVS of the different ML models applied to the best performing dataset (HWAG)(see Fig.1 and 
Table 1). 1-5 columns stand for the five folds cross-validation sets for training and evaluation; avCVS stands for the 
average of the 5 folds columns; Voting3 stands for the voting ensemble model trained with the 3 best performing ML 
models according to Fig. 1 and Table1 (SVC, GradientBoosting, and NeuralNetwork); and Voting2 stands for the voting
ensemble model trained with the 2 best performing ML models (GradientBoosting and NeuralNetwork).

HW HWA HWG HWE HWAG HWAGE
Model B.Acc. F1 AUC MCC avHW (Ref.)B.Acc. F1 AUC MCC avHWA B.Acc. F1 AUC MCC avHWG B.Acc. F1 AUC MCC avHWE B.Acc. F1 AUC MCC avHWAG B.Acc. F1 AUC MCC avHWAGE
LogisticRegressi 0.9444 0.9982 0.9991 0.9420 0.9709 0.7222 0.9895 0.9956 0.6637 0.8428 0.9444 0.9982 0.9991 0.9420 0.9709 0.9444 0.9982 0.9991 0.9420 0.9709 0.7500 0.9897 0.9956 0.7040 0.8598 0.7222 0.9895 0.9956 0.6637 0.8428
SVC 0.9444 0.9982 0.9991 0.9420 0.9709 0.8889 0.9963 0.9982 0.8803 0.9409 0.9444 0.9982 0.9991 0.9420 0.9709 0.9400 0.9904 0.9990 0.7348 0.9161 0.9500 0.9982 0.9991 0.9478 0.9738 0.9409 0.9918 0.9990 0.7657 0.9244
GradientBoosting 0.9444 0.9982 0.9991 0.9420 0.9709 0.9991 0.9983 1.0000 0.9478 0.9863 0.9444 0.9982 0.9991 0.9420 0.9709 0.9444 0.9982 0.9991 0.9420 0.9709 1.0000 1.0000 1.0000 1.0000 1.0000 0.9444 0.9982 0.9991 0.9420 0.9709
DecisionTree 0.8889 0.9963 0.9982 0.8803 0.9409 0.8889 0.9963 0.9982 0.8803 0.9409 0.8880 0.9946 0.9982 0.8223 0.9258 0.8880 0.9946 0.9982 0.8223 0.9258 0.9000 0.9963 0.9982 0.8928 0.9468 0.8889 0.9963 0.9982 0.8803 0.9409
RandomForest 0.8889 0.9963 0.9982 0.8803 0.9409 0.6667 0.9868 0.9947 0.5743 0.8056 0.8889 0.9963 0.9982 0.8803 0.9409 0.7778 0.9920 0.9964 0.7427 0.8772 0.7500 0.9897 0.9956 0.7040 0.8598 0.7778 0.9920 0.9964 0.7427 0.8772
Voting 0.8889 0.9963 0.9982 0.8803 0.9409 0.8889 0.9963 0.9982 0.8803 0.9409 0.8889 0.9963 0.9982 0.8803 0.9409 0.8889 0.9963 0.9982 0.8803 0.9409 0.8500 0.9943 0.9973 0.8344 0.9190 0.8889 0.9963 0.9982 0.8803 0.9409
NeuralNetwork 0.8262 0.9827 0.9972 0.5254 0.8329 0.8889 0.9963 0.9982 0.8803 0.9409 0.8880 0.9946 0.9982 0.8223 0.9258 0.9435 0.9965 0.9991 0.8871 0.9566 0.9500 0.9982 0.9991 0.9478 0.9738 0.9435 0.9965 0.9991 0.8871 0.9566
KNeighbors 0.5000 0.9763 0.9921 0.0000 0.6171 0.5000 0.9763 0.9921 0.0000 0.6171 0.5000 0.9763 0.9921 0.0000 0.6171 0.5000 0.9763 0.9921 0.0000 0.6171 0.5500 0.9777 0.9921 0.3137 0.7084 0.5000 0.9763 0.9921 0.0000 0.6171
RidgeClassifier 0.5000 0.9763 0.9921 0.0000 0.6171 0.5000 0.9763 0.9921 0.0000 0.6171 0.5000 0.9763 0.9921 0.0000 0.6171 0.5000 0.9763 0.9921 0.0000 0.6171 0.5500 0.9777 0.9921 0.3137 0.7084 0.5000 0.9763 0.9921 0.0000 0.6171

CVS(HWAG) 1 2 3 4 5 avCVS
NeuralNetwork 0.9912 0.9561 0.9735 0.9735 0.9558 0.9700
GradientBoosting 0.9386 0.9474 0.8850 0.9381 0.8761 0.9170
DecisionTree 0.9123 0.9298 0.8673 0.9381 0.8673 0.9029
Voting 0.9474 0.9474 0.9115 0.8673 0.9115 0.9170
Voting3 0.9386 0.9298 0.8938 0.8938 0.9292 0.9170
Voting2 0.9474 0.9298 0.8850 0.8673 0.9027 0.9064
SVC 0.8421 0.8333 0.8407 0.8761 0.8407 0.8466
RandomForest 0.9386 0.9386 0.9027 0.9027 0.9469 0.9259
LogisticRegression 0.9386 0.8860 0.8761 0.8230 0.8496 0.8746
KNeighbors 0.9386 0.9649 0.8938 0.8938 0.8850 0.9152
RidgeClassifier 0.9386 0.8947 0.8850 0.9204 0.8761 0.9029
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Finally, the model performance analysis revealed a notable agreement between the Gradient 
Boosting model and the traditional BMI formula (Figure 2). The analysis exhibited high 
concordance rates, with a total of 871 agreements (75 instances demonstrating agreement between 
the BMI formula and the Gradient Boosting model trained only with height and weight features 
(HWagr), 13 instances demonstrating agreement between the BMI formula and the Gradient 
Boosting model trained with additional age and gender features (AGagr), and 783 instances 
demonstrating agreement between the BMI formula and both ML dataset-models (ALLagr). A total 
of 129 novel predictions were also obtained, representing the disagreement between the BMI 
formula and the ML models but the agreement between both ML models. Interestingly, zero 
disagreements were found, i.e. no disagreement between both ML models and no disagreement of 
any of the models with the BMI formula. 

Figure 2. Model performance analysis.
This graphic represents the performance of the Gradient Boosting ML model vs the traditional formula. Abbreviations: 
Agree: Total ML models agreements vs the BMI formula. HWagr: height and weight model agreement with BMI 
formula; AGagr: height, weight, age and gender model agreement with BMI formula; ALLagr: Both ML Models 
agreement and BMI formula agreement; Predictions: BMI formula disagreement but ML models agreement; Disagree: 
ML models disagreement and BMI formula disagreement.

In summary, our findings support the use of modern ML methods such as Gradient Boosting to: 1) 
support the traditional BMI results; and 2) enhance its predictive power by formulating new 
hypothesis. Incorporating age and gender into the traditional BMI calculations can enhance the 
predictive power of the formula, evidenced by the capability of the ML model to outperform the 
results of the traditional BMI formula. Notably, models trained with additional parameters (age and 
gender, apart from height and weight) demonstrated improved precision and accuracy, offering a 
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more nuanced approach to BMI measurement. Cross-validation analysis further supported the 
efficacy of certain ML models such as Gradient Boosting for enhancing the predictive capability of 
the traditional BMI formulation.

Discussion

BMI is a standard health assessment tool in most healthcare facilities. Although, for decades, the 
BMI has been widely used as a standard measurement for health based on body size, it has been 
criticized for its oversimplification of the real meaning of being healthy. Many researchers have 
claimed that BMI is outdated and inaccurate, and, perhaps, it should not be used in medical and 
fitness settings. For example, in epidemiological studies, the BMI based on self-reported height and 
weight (self-reported BMI) is subjected to measurement error [17]. Other studies have suggested 
adjusting the Normal BMI values to avoid false positive/ negative assignments [18]. It is expected 
that medical professionals would take the BMI result and consider patients as unique individuals. 
However, some health professionals use only BMI to measure a person's health status before 
providing medical recommendations. This can lead to weight bias and poor quality healthcare [19, 
20]. Moreover, serious medical issues might go unnoticed or incorrectly seen as weight-related 
problems [19]. Other studies have shown that the higher a person's BMI is, the less likely the person
will attend regular health checkups due to fear of being judged, distrust of the healthcare 
professional, or a previous negative experience. This can lead to late diagnoses, treatment, and care 
[21]. However, because of the ease and efficiency of gathering height and weight information, it 
remains important to assess the extent of error present in self-reported BMI measures and to explore
possible adjustment factors. Our study provides such possible adjustments by incorporating 
additional features such as age and gender and enhancing the power of BMI calculations by means 
of the last state-of-the art ML technologies.

The implications of our findings for clinical practice and public health interventions are substantial. 
By incorporating age and gender into BMI calculations, we can offer more personalized health 
assessments, leading to improved preventive strategies and interventions. For instance, considering 
age-related changes in body composition and metabolism, as well as gender-specific health 
disparities, could lead to more accurate assessments of obesity-related risks and improved 
preventive strategies. Additionally, by acknowledging the diversity in body compositions across 
different demographic groups, interventions can be better tailored to address the unique needs of 
individuals, ultimately enhancing the effectiveness of weight management programs and health 
interventions.

However, limitations such as dataset representativeness and practical challenges in implementing 
ML-enhanced BMI calculations must be addressed. While our analysis leveraged a comprehensive 
dataset from the National Health and Nutrition Examination Survey (NHANES), the 
representativeness of this dataset may be subject to certain biases, particularly in terms of ethnic 
diversity. As NHANES primarily represents the U.S. population, the generalizability of our findings
to more diverse populations globally may be limited. For example, the specific BMI cut-off points 
for the Asian-Pacific population [6] highlight the importance of properly stratifying ethnic data. 
This could explain why using ethnicity as an additional parameter for BMI class prediction did not 
show any significant improvement compared to the use of age and gender. Future studies should 
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aim to address these limitations by incorporating more diverse and representative datasets, ensuring 
that findings can be applied to a broader range of populations.

Furthermore, the application of some ML models such as Ridge Classifier and KNeighbors suggests
some potential limitations of these models or the nature of the data used for training. Moreover, 
while our study demonstrates the potential of ML-enhanced BMI calculations in improving health 
assessments, challenges may arise in implementing these approaches in real-world healthcare 
settings. Practical considerations such as data accessibility, model interpretability, and integration 
into existing healthcare systems need to be carefully addressed. Additionally, ensuring data privacy 
and maintaining confidentiality in accordance with ethical guidelines should be considered. 
Collaborative efforts are needed to overcome these challenges and facilitate the integration of ML 
models into routine clinical practice. 

Conclusions

In conclusion, our study highlights the potential of ML models to enhance BMI calculations by 
incorporating additional parameters such as age and gender. ML models such as Gradient Boosting  
emerged as promising alternatives, showcasing the potential for a more nuanced and accurate 
approach to BMI measurement. These findings offer valuable insights into the future of BMI 
assessment and underscore the need for further research to refine and validate these approaches. In 
summary, this study provides valuable insights into the predictive capabilities of ML models for 
BMI classification. Our results underscore the potential for improved BMI measurements by 
adapting traditional formulas with additional parameters, such as age and gender. Indeed, some 
studies highlighted the significance of incorporating age and gender into BMI calculations for more 
accurate assessments of obesity and related health risks [22,23].

Future research in this domain could contribute to developing more personalized and accurate 
health assessment tools. The BMI only considers weight and height as a measure of health status, 
rather than the person. Our results suggest that considering height, weight, age and gender, and 
potentially other factors that may affect an individual weight and health status, such as a more 
comprehensive ethnicity dataset, could complement traditional BMI calculations and provide more 
consistent health statements. For example, health practitioners could train and test their historical 
patient data with the above ML models and additional BMI parameters (age, gender, or both 
independently), and, either serve as a validation of the results, if there is no difference with the 
traditional BMI results, or, in case of discrepancy, study in more detail the potential causes behind 
the differences between the traditional BMI formula versus the ML model prediction. Furthermore, 
additional data, such as body composition [24], medical history [25], and demographic and 
socioeconomic information [26], could help health practitioners, researchers, and scientists to 
provide more realistic weight management and health assessments, as well as early diagnoses, 
treatments, better healthcare, as well as new opportunities for R&D and scientific discovery. 

In summary, our study contributes to the ongoing discourse surrounding BMI calculations and their 
implications for health assessments. By integrating age and gender into BMI calculations using ML 
techniques, we offer a novel approach to improving health assessments and tailoring interventions. 
Our findings underscore the potential of ML-enhanced BMI calculations in providing more 
personalized and accurate health assessments, ultimately leading to better health outcomes for 
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individuals. Future research directions include exploring the influence of ethnicity on BMI 
calculations, refining ML algorithms for enhanced prediction accuracy, integrating additional health
parameters into BMI assessments, conducting validation studies across diverse populations, and 
addressing ethical and practical considerations for the implementation of ML-enhanced BMI 
calculations in healthcare settings. Additionally, exploring the impact of other factors such as body 
composition, medical history, and socioeconomic status on BMI calculations could provide valuable
insights into developing more comprehensive health assessment tools. By leveraging modern ML 
techniques, we can revolutionize BMI calculations and improve health outcomes on a global scale.
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